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Abstract. We study a multiblock method for compressible turbulent flow simulations and present results obtained 
from calculations on a two-element airfoil. A cell-vertex or vertex-based spatial discretization method and explicit 
multistage Runge-Kutta time stepping are used. The vertex-based method is found to give better results than the 
cell-vertex method. In the latter method a larger amount of artificial dissipation is required since different control 
volumes are used for the discretization of the viscous and convective fluxes. The slow convergence of the time 
stepping method makes a multigrid acceleration technique indispensable. This technique leads to an acceleration by 
about a factor of 10. The numerical predictions are in good agreement with experimental results. It is shown that the 
convergence of the multigrid process depends considerably on the ordering of the various loops. If the block loop is 
put inside the stage loop the process converges more rapidly than if the block loop is situated outside the stage loop 
in case a three-stage Runge-Kutta method is used. If a five-stage scheme is adopted the process does not converge 
in the latter block ordering. Finally, the process based on the five-stage scheme is about 60% more efficient than 
with the three-stage scheme, if the block loop is inside the stage loop. 

1. Introduct ion  

N u m e r i c a l  s imula t ions  of  t u r b u l e n t  flow in a e r o d y n a m i c  app l i ca t ions  a re  f r equen t l y  b a s e d  on  

the  R e y n o l d s - a v e r a g e d  N a v i e r - S t o k e s  equa t ions .  O n e  of  the  ma in  p r o b l e m s  in a e r o n a u t i c s  is 

t he  p r e d i c t i o n  o f  flow quan t i t i e s  in c o m p l i c a t e d  geome t r i e s ,  such as the  m u l t i - e l e m e n t  airfoi l  

(see  Fig.  1). Such a conf igura t ion  is used  for  the  s imula t ion  of  t ake -o f f  and  l and ing  

cond i t i ons .  T h e  s imula t ion  of  t u r b u l e n t  flow a r o u n d  such a m u l t i - e l e m e n t  a i r foi l  conf igura-  

t ion  was one  o f  the  app l i ca t ions  se l ec t ed  for  the  compre s s ib l e  flow so lver  which  was 

d e v e l o p e d  by  ou r  g r o u p  and  N L R  as a pa r t  of  the  D u t c h  I S N a S  ~ p r o j e c t  [1, 2]. F o r  this  

a p p l i c a t i o n  the  use  o f  a s ingle b lock ,  b o u n d a r y  con fo rming ,  s t ruc tu red  gr id  is imposs ib l e  and  

o n e  m a y  se lec t  e i the r  an uns t ruc tu r ed  grid a p p r o a c h  o r  a b lock  s t ruc tu red  grid a p p r o a c h .  

A l t h o u g h  the  f o r m e r  t e chn ique  has  b e e n  successful ly  app l i ed  by  o the r s  [3], we se l ec t ed  the  

b l o c k  s t r u c t u r e d  a p p r o a c h  in view of  the  t r a n s p a r e n t  da t a  s t ruc ture  in the  coding ,  ease  o f  

i m p l e m e n t a t i o n  of  the  t u rbu l ence  m o d e l  and  a high f lexibi l i ty  wi th  r e spec t  to  the  use  o f  

d i f f e r en t  phys ica l  m o d e l s  in d i f fe ren t  par t s  of  the  c o m p u t a t i o n a l  d o m a i n .  M o r e o v e r ,  a b lock  

s t ruc tu re  s eems  to be  espec ia l ly  t r a n s p a r e n t  for  a poss ib le  pa ra l l e l  p rocess ing .  

In  a p r e v i o u s  p a p e r  [4] the  numer i ca l  m e t h o d  has b e e n  de sc r ibed  and  the  b lock  s t r uc tu r ed  

a p p r o a c h  was i n t r o d u c e d .  A p p l i c a t i o n  of  the  resul t ing  mu l t i b lock  m e t h o d  to c o m p r e s s i b l e  

Fig. 1. Geometry of a two-element airfoil, consisting of the NLR-7301 profile plus a flap with a gap width of 2.6% 
chord length. 
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flow around a single airfoil enabled a comparison with a monoblock method.  It appeared 
that for both laminar and turbulent flow around a single airfoil the introduction of the 
multiblock structure has no influence on the results, with respect to both the steady-state 
solution and the convergence rate. Furthermore,  invoking the Euler  equations instead of the 
Navier -Stokes  equations in blocks outside the boundary layer and wake appeared to have no 
significant influence on the results. In this paper we describe the application of the 
multiblock concept to the multi-element airfoil. 

First in Section 2 a short description of the numerical method and the multiblock 
algorithm will be given. For the simulation of subsonic, turbulent flow around a two-element 
airfoil two drawbacks of this method become apparent. In the first place the cell-vertex 
spatial discretization method which was adopted gives rise to a rather high level of artificial 
dissipation in the boundary layers and leads for the present application to oscillations in the 
numerical solution. In the second place the rate of convergence of the method is 
unacceptably low. In order to overcome these problems an alternative discretization method,  
which allows for a lower level of artificial dissipation, and a multigrid method as a 
convergence acceleration technique are presented in this paper. As a point of reference the 
performance of the multiblock solver for turbulent flow around a two-element airfoil is 
studied in Section 3, illustrating these two problems. Improvements upon the method are 
introduced and analyzed in Section 4. 

The resulting multigrid multiblock method is first applied to the simulation of inviscid flow 
in Section 5 showing that an acceptable rate of convergence towards the steady-state solution 
is obtained. It is further demonstrated that the specific implementation of the solid wall 
boundary condition for the pressure has a significant effect on the solution. We proceed in 
Section 5 by applying the method to simulate viscous turbulent flow. The Reynolds-averaged 
Navier -Stokes  equations are solved in the blocks situated in shear layers and the Euler  
equations in the 'outer '  blocks. Although the convergence is not as fast as for monoblock 
simulations of transonic flow, the multigrid technique yields an appreciable acceleration. The 
results are compared with wind-tunnel measurements,  showing a good agreement for both 
the pressure coefficient on the airfoil and the displacement thickness. Moreover ,  the 
oscillations in the numerical solution which were found with the cell-vertex method,  are 
strongly reduced by the alternative discretization. Finally, in Section 5 several investigations 
with respect to the possibilities of parallel processing are presented. It appears that a rather 
high amount  of data transfer between the blocks is necessary in order  to retain the high 
convergence rate. This result is in contrast with the results of the single grid simulations 
repor ted  in [4], where the solutions in different blocks could be independently updated over 
a large number  of time steps without affecting the rate of convergence. It illustrates the 
effectiveness of a multigrid method in transporting signals through the computational domain 
through the use of coarser grids. We summarize our findings in Section 6. 

2. Numerical method 

The  numerical method has been described in reference [4], but will briefly be recapitulated 
here  for the sake of completeness. The two-dimensional, compressible Navier-Stokes  
equations can be written in integral form as 

(1) 
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where U represents the vector of dependent  variables, 

U = [p, pu, pv,  E]T ,  (2) 

with p the density, u and v the Cartesian velocity components,  and E the total energy 
density. Further ,  f~ is an arbitrary part of the two-dimensional space with boundary 8~ and 
F and G are the Cartesian components  of the total flux vector. This flux vector consists of 
two parts: the non-dissipative or 'convective' part and the dissipative or 'viscous' part,  which 
describes the effects of viscosity and heat conduction, and involves first order  spatial 
derivatives. The Navier-Stokes  equations (1) are averaged over a sufficiently large time 
interval. Due to tile nonlinear terms in the convective fluxes, the resulting 'Reynolds- 
averaged Navier-Stokes '  equations involve averages of products of two velocity components.  
These terms are modeled by a suitable turbulence model. In the present paper the algebraic 
Ba ldwin-Lomax  turbulence model,  in which the unknown terms are modeled by eddy 
viscosity terms, is adopted [5]. 

The spatial discretization of the Navier-Stokes equations is based on a cell-vertex finite 
volume method.  The variables are stored in the grid points and as a control volume for the 
convective fluxes the union of four neighboring grid cells is taken. For the viscous fluxes the 
control  volume is the area between four neighboring cell centers, as indicated in Fig. 2. The 
integrations over the cell face, as required in the formulation in equation (1), are performed 
using the trapezoidal rule. 

In order  to prevent  odd-qven decoupling and to capture possible shock waves nonlinear 
artificial dissipation is added to the basic numerical scheme. This artificial dissipation consists 
of two contributions: fourth order  difference terms which prevent odd-even decoupling, and 
second order  difference terms to resolve shock waves. The second order  terms are controlled 
by a shock sensor, which detects discontinuities in the pressure. In the present flow solver 
the artificial dissipation in the boundary layers, where the effects of the viscous dissipation 
should be dominant,  may be reduced by multiplication with the ratio of the local and free 
stream Mach number.  The role of the artificial dissipation in relation to the viscous 
dissipation is discussed in more detail in reference [6]. 

At  the solid wall boundaries the no-slip adiabatic wall condition is used for viscous 
simulations and the impermeability condition for inviscid simulations. For viscous simula- 
tions the density and energy density in the grid points on a solid wall are calculated by 

v 

i 

Fig. 2. Control volume for the vertex-based method and for the viscous fluxes in the cell-vertex method (dashed) 
and for the convective fluxes in the cell-vertex method (solid). 
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solving the corresponding discrete conservation laws, using the two adjacent cells within the 
computational domain and their mirror images inside the wall as control volume. The values 
of the density and energy density in the grid points inside the walls are adjusted such that the 
adiabatic wall condition is approximated. For inviscid simulations the tangential velocity 
component,  the pressure and the density are extrapolated from inside the computational 
domain. The boundary conditions at a (subsonic) far field boundary are based on characteris- 
tic theory. 

The system of ordinary differential equations, which results after spatial discretization, is 
integrated in time using a time explicit multistage Runge-Kut ta  method. In the present flow 
solver a three-stage scheme in which the dissipative fluxes (both viscous and artificial) are 
calculated once per time step, and a five-stage scheme in which the dissipative terms are 
calculated only at the odd stages, are implemented. With this treatment both calculation time 
is saved and the stability region of the method is increased. Extra calculation time is saved by 
advancing each grid point at the maximum local time step according to its own stability limit. 
In this way the evolution from the initial solution to the steady-state is no longer time 
accurate, but the steady-state solution obtained is unaffected. 

In the multiblock solver the total computational domain is divided into blocks. We restrict 
ourselves to grids with continuous grid lines over block interfaces and one boundary 
condition per edge or vertex. Each block is 'dressed' with two rows of dummies near each of 
its four edges. In this way the spatial discretization scheme can be applied to each point of a 
block, including the boundary points. The dummy variables corresponding to block 
interfaces are updated through copying from the neighboring blocks after all blocks have 
been updated. Depending on the loop ordering this treatment of the dummy variables is 
carried out after every stage of the Runge-Kut ta  scheme, or after a whole time step. During 
each stage the spatial discretization scheme is applied to all interior points, and subsequently 
the local boundary conditions are applied to the points on the edges and vertices. These can 
be solid wall boundary conditions, far field boundary conditions or the application of the 
spatial discretization scheme in case the point is on a block interface. Hence, the points on 
block interfaces are treated more than once during one stage. The possible resulting 
multi-valuedness is removed by averaging. The averaging procedure is executed simulta- 
neously with the update of the dummy variables, i.e. either after every stage of the 
Runge-Kut t a  scheme, or after a whole time step. 

Due to the topology of the two-element airfoil geometry special points in the computation- 
al grid are unavoidable. The computational grids used contain two special points at block 
boundaries, where five cells meet, in contrast to the usual four. These points can be treated 
in an elegant way within the same numerical scheme, if the dummy vertices outside the 
'current '  block are defined appropriately. This is sketched in Fig. 3. Notice that the control 
volume corresponding to a special point is not unique and depends on which block is 
currently being treated. The resulting multi-valuedness of the variables at the special point is 
eliminated by taking the average of the five different values after all blocks have been 
treated. 

Another  special feature connected to the two-element airfoil geometry is the definition of 
the turbulent viscosity. In the standard Baldwin-Lomax turbulence model different formula- 
tions are used for boundary layers and wakes, which are matched with a suitable smoother in 
the trailing edge region of an airfoil. The multi-element airfoil geometry requires a further 
extension of the turbulence model, since there are regions in the flow which are situated in 
both the wake of the main airfoil and the boundary layer of the flap. For these regions the 
Baldwin-Lomax model yields two values for the turbulent viscosity, one stemming from the 
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Fig. 3. Control  volume for a special point; vertex-based method  and viscous flux in cell-vertex method  (dashed);  
convective flux in cell-vertex method  (solid). 

wake formulation applied to the main airfoil and the other stemming from the boundary 
layer formulation of the flap. The resulting turbulent viscosity is averaged in the following 
way [7] 

2 2 
p~,ly2 + I.Lt2Y 1 

/~t --  y21 + y~ , (3) 

where tzti is the turbulent viscosity according to one of the formulations, and Yi the distance 
to the wake center line or profile. In regions which are in the boundary layer of both parts of 
the airfoil, or in the wake of both parts, an analogous treatment is used. 

After  this description of the numerical method and the multiblock algorithm, we consider 
its application to the simulation of compressible turbulent flow around a two-element airfoil. 

3. Application of  the flow solver to the multi-element airfoil 

We will present results for a two component  airfoil geometry consisting of the NLR-7301 
wing section, from which a flap has been cut out at a deflection angle of 20 ° and with a gap 
width of 2.6% chord length [8] (see Fig. 1). The combination of a Mach number  of 0.185 and 
an angle of incidence of 6 ° or 13.1 ° , of which the latter is close to maximum lift conditions, 
yields subsonic flow. The Reynolds number based on the chord length of the airfoil is 
2.51 × 10  6. In the viscous calculations the locations of the transition from laminar to 
turbulent  flow are prescribed at positions obtained from experiments. 

The  C-type computational grids (either for inviscid or viscous flow) were constructed by 
J.J. Benton from British Aerospace,  and are subdivided in 37 blocks (see Fig. 4). The grid 
lines are continuous over block boundaries. Two grids are used: one 'Euler '  grid (inviscid) 
consisting of 16448 cells, and a 'Navier-Stokes '  grid (viscous), which is refined in the 
boundary  layers and wakes and consists of 28288 cells. Fig. 4 shows that the two special 
points, where five blocks meet,  are located well outside the boundary layers. 

For  both angles of incidence results from wind-tunnel measurement  by Van den Berg [8] 
are available, including velocity profiles in the boundary layers and the pressure coefficient 
on the profile. Since the flow is attached apart from a small laminar separation bubble near 
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Fig. 4. Block structure of the computational grid for the two-element airfoil, generated by J.J. Benton from British 
Aerospace. 

the leading edge of the airfoil, the adopted turbulence model should be adequate and yield a 
useful comparison between experiment and calculation. 

We consider as an example the steady-state solution for turbulent flow at an angle of 
incidence of 6 °. The above multiblock algorithm is used with a three-stage Runge-Kut t a  
scheme, and with the stage loop inside the block loop, i.e. the same loop ordering as used in 
[4]. It is checked that the steady-state solution is unchanged if in the outer  blocks the inviscid 
Euler  equations are solved instead of the Reynolds-averaged Navier-Stokes  equations. This 
enables a substantial reduction of calculation time. The calculated steady-state pressure 
coefficient on the airfoil and flap is compared with the measurements in Fig. 5. The overall 
agreement  between the numerical and experimental results is quite reasonable. However ,  
near  the trailing edge of the airfoil and flap and on the upper side of the flap oscillations in 
the numerical solution are visible. In Fig. 6, where an enlargement of the pressure coefficient 
on the flap is plotted, this phenomenon is shown in more detail. 

Apar t  from this inadequacy in the solution another disadvantage of the present multiblock 
algorithm is the slow convergence rate. Over 50,000 time steps are needed to decrease the 
residuals by only four orders of magnitude. In the following sections we will introduce an 
alternative spatial discretization method,  replacing the cell-vertex method,  and a multigrid 
acceleration technique in order to substantially improve the multiblock method with respect 
to these two points. 

4. Improved algorithm 

In this section methods are presented which remove the disadvantages mentioned in the 
previous section, i.e. the occurrence of oscillations in the numerical solution and the low rate 
of convergence. 
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Fig. 5. Comparison between the calculated (solid) and experimental (circles) pressure coefficient on the airfoil and 
flap for viscous flow at an angle of 6.0°; cell-vertex method.  
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Fig. 6. Comparison between the calculated (solid) and experimental (circles) pressure coefficient on the flap for 
viscous flow at an angle of 6.0°; cell-vertex method.  

4.1. Vertex-based algorithm 

It has been reported in the literature that the cell-vertex discretization method with central 
differencing and nonlinear artificial dissipation leads to a rather high amount of dissipation in 
boundary layers [6,9]. After spatial discretization the Navier-Stokes equations can 
schematically be written as 

dU/j  
- f ! Q  +f},~ +f !" !  (4) 

dt ~,,/ ~,,1 , 

where Uij is the vector of dependent variables in a grid point {i, j}, f(c) is the convective 
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flux, f(v) is the convective flux, f(o) the viscous flux and f(a) the artificial dissipation. The 
latter consists of contributions from both spatial directions, each of which has the form 

d i + l / 2  - d i _ l / 2  , (5)  

where 

d i + l / 2  (2) _(4) A3 r71 = S i + l / 2 [ e i + i / 2 A i + l / 2  U - ~i+1/2l- l i+1/21-1] .  (6) 

Here, Si+l/2 is a scaling factor, _(2) and _(4) /~i+1/2 /Zi+l/2 are functions of a shock sensor, and mi+l/2 
3 and Ai+l/2 are first and third order difference operators. A natural choice for the scaling 

factor Si+l/2 is [10] 

1 
Si+ l/2 = ~ IS i --}- Si+l], (7) 

where 

M i , j  (i) 
S i = ~ t~i,.i , (8 )  

and A~I } is the maximum eigenvalue of the flux Jacobian matrix in the /-direction. 
Furthermore,  the factor Mi.j/M=, where M is the local Mach number reduces the artificial 
dissipation in the boundary layer, which is necessary for simulations at high Reynolds 
number to ensure the dominance of the viscous flux effects over the artificial dissipation in 
the shear layers. 

In the cell-vertex scheme the discrete convective flux is based on a control volume which 
differs from that used for the viscous flux and artificial dissipation. The latter terms both use 
the area between the dashed lines in Fig. 2 as a control volume. Especially in high aspect 
ratio grid cells this treatment of the convective flux requires an extra amount of artificial 
dissipation in order to arrive at a stable method. This can be achieved with an increase of the 
scaling factor Si+l/2 by replacing equation (8) by 

Mi j ( ,~!*)/) t! i!~2/31)t! i  ! S, = ~ [1 + (9) \ - - l , 1 - ' ' 1 , ] 1  a--t,1 ' 

where a!J} is the maximum eigenvalue of the flux Jacobian matrix in the j-direction. The --t,] 
term between the brackets increases the artificial dissipation in the streamwise direction in 
the boundary layer (see e.g. [11, 14]). 

An alternative to the cell-vertex method is the vertex-based method, where the control 
volume for the convective flux is the same as for the other two fluxes. The convective flux 
through an edge of this control volume is then integrated with the midpoint rule, and the 
value of the flux vector at the midpoint follows as the average over the two neighboring grid 
points. The better consistency of this discretization method enables a reduction in artificial 
dissipation through the use of the scaling factor (8) instead of (9) (see e.g. [6, 9]). 

4.2. Multigrid acceleration 

The second disadvantage of the multiblock algorithm is the low rate of convergence, which is 
even further decreased by the reduction of the artificial dissipation proposed above, i.e. 
when considering a vertex-based method instead of the cell-vertex method. This problem of 
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slow convergence is well-known for Runge-Kut t a  schemes, which have the property that the 
high frequency components  in the error are damped faster than the low frequency 
components .  

We will show this in the following way. Since we want to calculate the steady state solution 
of the Navier-Stokesokes  equations, it is required that the error,  defined as 

V(x, t) = U(x, t) - U0(x ) , (10) 

where U(x, t) is the t ime-dependent  solution and U0(x ) is the desired steady state solution, 
decreases sufficiently fast. Substitution of the definition of V in the Navier-Stokes  equations 
and linearization leads to an evolution equation for V(x, t) of the form 

V, + A V x  + B ~  = CVxx + DVxy -t- EVyy, (11) 

where the matrices A, B, C, D and E depend on U 0. In particular, the dominant part of A 
and B consists of the flux Jacobian matrices of the Euler  equations in the two spatial 
directions and the other  three matrices are proportional to the viscosity. This implies that the 
eigenvalues of A are approximately equal to the eigenvalues of the inviscid flux Jacobian 
matrix, i.e. equal to u and u _ c, where u is the velocity component  in the x-direction and c 
the speed of sound. 

The effects on the error  resulting from an application of Runge -Ku t t a  schemes to 
equat ion (11) can be demonstrated using the one-dimensional scalar model equation 

v t + av  x = tZVxx , (12) 

where a is the constant convection velocity and /z  the constant viscosity. The behavior of the 
er ror  v as a function of t can be studied by a stability analysis. To this end the equation is 
first discretized in space and the evolution of a particular Fourier mode in time is calculated. 
The amplification factor is defined as the ratio of the amplitudes of this Fourier mode after 
and before one time step. It is a function of the wave number of the Fourier mode,  and 
directly shows the decrease of the various components contained in the error  during the 
integration in time of equation (12). 

A typical result is presented in Fig. 7. There  the amplification factor after 10 Runge-Kut t a  
time steps is plotted as a function of the wave number for the two different time integration 
schemes used in this paper. These results are obtained with two different values for a. One 
of them corresponds with the maximum eigenvalue of the flux Jacobian matrix, the other  
with a value which is smaller by a factor of 10. In the low Mach number  simulations 
presented in this paper  the maximum and minimum eigenvalue of the flux Jacobian matrix 
may well differ by a factor of 10. Hence,  it is required that the time integration scheme 
effectively reduces the error  for both values of a. 

Fig. 7 shows that the high frequency components,  with 0 > ~-/2 are sufficiently damped for 
both time integration schemes and both values of the convection speed. However ,  the 
damping of the low frequency modes is considerably less and this behavior is more 
prominent  for the combination of the three-stage Runge-Kut t a  scheme with the small 
convection speed. 

A solution to this problem, which has often been reported in the literature [6, 9, 11] is the 
use of a multigrid technique. The idea behind this technique can be explained by the 
following two-grid model.  The high frequency modes are damped on the original, fine grid, 
as shown above. Hence,  after several time steps on the fine grid (so-called pre-relaxations), 
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Fig. 7. Amplification factor of Fourier modes after 10 time steps for a one-dimensional model problem; three-stage 
scheme and large a (solid); five-stage scheme and large a (dashed); three-stage scheme and small a (dash-dotted); 
five-stage scheme and small a (dotted). 

the error mainly consists of  low frequency components .  Then  the solution and error are 
transferred to a coarser grid, e.g. a grid with half the number of  grid points in both 
directions.  Through the transfer to this coarser grid the wave  numbers  of  the error are 
multipl ied by two.  Hence ,  on  the coarser grid more  Fourier m o d e s  of  the error can 
effect ively be damped  by application of  the time integration scheme.  After  several t ime steps 
on  this grid the solution is transferred again to the original fine grid. This prolongat ion 
introduces  s o m e  high frequency error, which can be reduced by some  additional t ime steps 

(so-called post-relaxations) on  the fine grid. 
The  effect o f  the two-grid mode l  is shown in Fig. 8, where the amplification factors for the 

same four examples  as shown in Fig. 7 are plotted. In the calculation five pre- and 
post-relaxations and 10 time-steps on the coarse grid have been used. The  figure clearly 
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Fig. 8. Amplification factor of Fourier modes after one V-cycle on two grids for a one-dimensional model problem; 
three-stage scheme and large a (solid); five-stage scheme and large a (dashed); three-stage scheme and small a 
(dash-dotted); five-stage scheme and small a (dotted). 
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shows the beneficial effects of the two-grid model,  as all components  of the error  with 
0 > rr/6 have almost completely vanished• As the computational effort of a time-step on the 
coarse grid is less than on a fine grid, a single-grid calculation cannot result in a comparable 
er ror  reduction within the same calculation time• 

In the multigrid technique a sequence of grids is defined and the two-grid model is 
successively applied till the coarsest grid is reached• Since this grid has a strongly reduced 
number  of grid points, the low frequency components  of the error  can sufficiently be 
decreased with a small computational effort• 

The multigrid technique applied in this paper can only be used for the calculation of steady 
state solutions. Consider the general discrete equation to explain the nonlinear multigrid 
technique employed here 

N ' (U ' )  = R ' ,  (13) 

where U ~ represents the solution vector at the original fine grid l, N z is the spatial 
discretization of the second term in equation (1) on the same grid level, and R t is a possible 
right hand side, which equals zero on the finest grid. Using the time stepping method as 
described above a fixed number  of pre-relaxations is performed on this grid, resulting in an 
approximate solution /it  o f  equation (13). The defect vector, which is a measure for the 
error ,  is defined as 

D '  = N'(/.~') - R '  --- N ' ( U ' )  - N ' ( / Y  + V ' ) ,  (14) 

where V t is the (unknown) error  on the fine grid. 
As this defect mainly contains low frequency modes, it can accurately be represented on a 

coarser grid L. Thus we write 

D t = N L ( O  L ) - N L ( O  L + v L ) ,  (15) 

where N L is the spatial discretization of the nonlinear operator  in equation (1) on the coarse 
grid, and D L, /_~c and V c represent the restrictions of the defect vector, solution vector and 
error  to the coarse grid. We can reformulate this equation as 

N L ( w  L) = R L , (16) 

where 

R L = N L ( ~ I  L) -- D L , (17) 

which we want to solve for W L (= 0L  + vL) ,  thus yielding an approximation for the desired 
error  V L on the coarse grid. As the structure of the equation is the same as equation (13), 
this solution can be approximated by applYting a fixed number of time steps on this coarse 
grid, using the restriction of the solution /] as initial solution. This leads to an approximate 

• ~ L  . . ~ L  ~ L  . 

soluUon W . Next,  the correction to the soluUon, W - U , Is prolonged to the fine grid 
and added to the approximate solution UZ, and starting from this corrected solution a fixed 
number  of post-relaxations of equation (13) is performed. 

In the flow solver described in this paper the solution is restricted to the coarser grid by 
injection, and the defect vector by full weighting, i.e. 
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L l 
Ui, j ~- U2i,2 j , (18) 

and 

L l 1 j t t D l 
Di,j  : D2i,2j q- -2 (D2i+l,2j q- D2i,2j+l q- D2i-1,21 q- 2 i , 2 j - 1 )  

1 
+-'4 (Dl2i+l,2j+l + D2i-1,2j+ll Jr- D2i_l,2j_ i t  _1_ D2i+l,2j_l ) 1  . (19) 

The correction to the solution, C, is prolonged to the finer grid by means of bilinear 
interpolation, i.e. 

L cl2i,2j = Ci, j 

Clgi+l,j 1 L -~" 2 (Ci Lj + Ci+ 1,j) 

Clzi + 1 L ~,2j+ =~.(C~,j+C/L+~,j+ L L . Ci+l,]+ 1 "F Ci,j+l) 

(20) 

In this solver an initial solution on the finest grid is obtained with a full multigrid method. 
During the nonlinear multigrid phase either V- or W-cycles can be chosen. In order to 
increase the smoothing properties of the Runge-Kut ta  time-stepping technique an implicit 
averaging of the residuals can be applied with frozen residuals at the boundaries of each 
block. 

Details on multigrid methods for nonlinear partial differential equations can be found for 
example in [12, 13]. For monoblock applications this method has given satisfactory results for 
both two-dimensional and three-dimensional flows [6, 14]. 

In the multi-element airfoil application care has to be taken in the definition of the 
residual vector in the special points. The proposed treatment of a special point implies that 
the control volume is different in each of the five blocks where such a point is found. In the 
required averaging the five residual vectors in a special point are weighed with their 
corresponding time steps. Without this weighing the multigrid process cannot converge to the 
single grid steady-state solution. 

There are various possibilities for intertwining the different loops in this multigrid, 
multiblock solver with a multistage time stepping method. In the present study the grid loop 
is chosen as the outer loop and the effect of interchanging the block and the stage loop will 
be studied. Several 'competing' requirements serve as possible guidance for selecting a 
specific ordering of these loops. On the one hand an anticipated parallel processing of the 
different blocks is more efficient if the data transfer between the blocks is kept to a 
minimum, i.e. with the stage loop inside the block loop. On the other hand the good 
convergence of the multigrid monoblock solver may be reduced as the dummy variables near 
the block boundaries are kept frozen during more stages of the time step. This would suggest 
to put the block loop inside the stage loop. In order to study this dilemma we implemented 
these two loop orderings in a flexible way: a single parameter determines whether the block 
loop is situated inside or outside the stage loop. 

In the next section the results of the vertex-based method in combination with multigrid 
acceleration are presented for both inviscid and viscous flow. For inviscid flow the effect of 
two different implementations of the numerical boundary conditions is studied. For viscous 
flow the effects of different loop arrangements on the convergence rate are shown. 
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Furthermore, the speed-up due to the multigrid method is calculated in terms of both 
number of operations and calculation time. 

5. Results 

5.1. Inviscid flow 

In this section we consider the relatively simple inviscid flow case, where in all blocks the 
Euler equations are solved. This allows to separate problems related to the turbulence model 
from possible algorithmic problems. 

In Fig. 9 the multigrid convergence behavior of the solver in the 13.1 ° case is shown. The 
discrete L2-norm of the residual of the density is plotted as a function of the number of 
W-cycles. The calculation is performed with the block loop inside the stage loop, i.e. with 
the dummy variables updated after every stage, and using the five-stage Runge-Kutta 
scheme. A converged solution is obtained within a much smaller calculation time when 
compared to the single grid approach even though only three different grid levels are 
available. Both for the single grid and the multigrid calculations the same solution converged 
up to machine accuracy is obtained. This would not be possible without the special weighing 
procedure of the residual vectors in a special point. The specific block structure nor the 
treatment of the special points leads to any algorithmic difficulties. For this inviscid test a 
comparison with experimental results is not meaningful and will not be made. A result which 
can be checked, however, is the predicted value of the drag coefficient, which should 
theoretically be equal to zero, due to the fact that no shock waves are present in this 
subsonic flow. The artificial dissipation and the numerical boundary conditions at the airfoil, 
however, lead to a numerical boundary layer and hence to a positive drag coefficient. The 
implementation of the numerical boundary condition for the pressure is found to be 
especially critical. If the tangential velocity component and the density at the airfoil are 
linearly extrapolated and a zeroth order implementation of zero normal pressure gradient is 
used, the drag coefficient is predicted equal to 0.0914, which is a rather high value. If, 
however, linear extrapolation is also used for the pressure, the drag coefficient is reduced to 
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Fig. 9. Convergence behavior for inviscid flow at an angle of incidence of 13.1°; vertex-based method. 
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the more acceptable value of 0.0423. This change also leads to a slight increase in the 
convergence rate. 

5.2. Viscous flow 

We consider the simulations of turbulent, viscous flow and present results for the 6 ° case, 
which was already shown in Section 3. In a simulation of turbulent flow at high Reynolds 
number it is important that the effects related to the physical dissipation are not outweighed 
by those of the numerical or artificial dissipation. This requirement could give rise to 
difficulties in the present multigrid method, since the time stepping method used requires a 
certain minimum amount of dissipation for sufficient smoothing of the large wave number 
components of the error (see reference [6]). If the artificial dissipation in the boundary layer 
is reduced by scaling with the ratio of the local and free stream Mach number, i.e. decreasing 
the smoothing properties of the time stepping method, a converged solution (engineering 
accuracy) could be obtained by increasing the number of pre- and post-relaxations. The 
convergence behavior of this calculation during the FAS stage is shown in Fig. 10, where the 
discrete L2-norm of the residual of the density is plotted as a function of the number of 
W-cycles. In the blocks outside the boundary layers and wakes the Euler equations are 
solved instead of the Navier-Stokes equations. The same loop ordering and Runge-Kutta 
scheme as in the inviscid calculation described above are applied. 

In this calculation implicit residual averaging is applied as well. Although this averaging 
increases the convergence rate measured in number of W-cycles, the calculation time 
necessary to obtain the steady-state solution is almost unchanged. There are two reasons for 
this. Firstly, the computational cost of the inversions of the tridiagonal matrices in the 
implicit residual averaging is quite high. Secondly, due to the fact that the residuals on the 
block boundaries are frozen in the averaging process the CFL number cannot be increased as 
much as in a monoblock simulation. 

The good agreement with the wind-tunnel measurements can be inferred from Fig. 11, 
where the experimental and numerically predicted pressure coefficient on the airfoil and flap 
are shown. The oscillations near the trailing edges and on the flap, which were found with 
the cell-vertex discretization method, are strongly reduced in the vertex-based method, as 
can be seen more clearly in Fig. 12 where an enlargement of Fig. 11 in the flap region is 
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Fig. 10. Convergence behavior for viscous turbulent flow at an angle of incidence of 6.0°; vertex-based method. 
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Fig. 11. Comparison between the calculated (solid) and experimental (circles) pressure coefficient on the airfoil and 
flap for viscous flow at an angle of 6.0°; vertex-based method. 
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Fig. 12. Comparison between the calculated (solid) and experimental (circles) pressure coefficient on the flap for 
viscous flow at an angle of 6.0°; vertex-based method. 

drawn. The main motivation for the replacement of the cell-vertex method by the vertex- 
based method was that the latter requires a lower amount of artificial dissipation and hence 
corresponds better with the physics, as pointed out in references [6] and [9]. The observation 
that the drag coefficient decreases from 0.0378 in the cell-vertex method to 0.0360 in the 
vertex-based method shows that the artificial dissipation is indeed lower. However in both 
methods the drag coefficient is overestimated, the experimental value being 0.0229 [8]. A 
similar overestimation has been reported by Larsson [15] for the same test case. There are 
several possible explanations for this discrepancy. Firstly, the experimental drag coefficient is 
deduced from the total-pressure defect and the static pressure measured in the wake, 
whereas the numerically predicted value follows from a surface pressure integration. 
Secondly, the predicted drag coefficient for inviscid flow simulations shows that the method 



26 H. Kuerten and B. Geurts 

x10-3 
8 

7 

6 

5 
% 
--- 4 

3 

2 

1 

0 

o 

o o 

0.2 0.4 0.6 0.8 ! 1.2 

MC 

Fig. 13. Compar i son  between the calculated (solid) and experimental  (circles) displacement thickness for viscous 
flow at an  angle of  6.0°; vertex-based method.  

generates a numerical boundary layer, which might still be present in the finer Navier- 
Stokes grid. This effect could be studied in more detail by local grid refinement. The lift 
coefficient predicted with the vertex-based method, 2.448, corresponds better with the 
experimental value of 2.416 [8]. 

The comparison between the measured and numerically predicted displacement thickness 
(6") is shown in Fig. 13. The displacement thickness is a sensitive measure for the assertion 
that the artificial dissipation in the boundary layer does not outweigh the physical 
dissipation. The good agreement shown in Fig. 13 indicates that the scaling of the artificial 
dissipation with the local Mach number leads to an accurate representation of the flow in the 
regions close to the airfoil and flap. 

5.3. Different loop arrangements 

This solution was obtained with the block loop inside the stage loop of the five-stage 
Runge-Kutta time stepping method. Hence, the variables at the dummy vertices outside a 
block are updated after every stage, which implies that the effects of the multiblock structure 
on the convergence are kept to a minimum. The high frequency of data transfer between the 
blocks makes this method less efficient for parallel processing. However, with the block loop 
outside the stage loop, i.e. with an update of the dummy variables only after five flux 
evaluations, a converged solution could not be obtained. Apparently, the interval between 
two moments of data transfer between the blocks has to be sufficiently small in order to 
obtain a convergent multigrid method. 

Further evidence for this statement is found from calculations with a three-stage instead of 
a five-stage Runge-Kutta time stepping method. If the block loop is outside the stage loop, 
the dummy variables are updated after three flux evaluations. Although the rate of 
convergence is lower than in the case with the block loop inside the stage loop, i.e. 
maximum data transfer between the blocks (see Fig. 14), the solution has converged to 
within engineering accuracy after ~ 200 W-cycles. A comparison of the three-stage and 
five-stage schemes with the block loop inside the stage loop shows that the five-stage scheme 
is more efficient: about 60 W-cycles suffice to reduce the residuals to the same engineering 
level as with the three-stage scheme after 200 W-cycles, which can be inferred from a 
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Fig. 14. Convergence behavior of the three-stage Runge-Kutta scheme for turbulent flow; comparison between 
block loop inside (solid) and outside (dashed) stage loop. 

comparison of Figs. 10 and 14. The five-stage scheme leads to a reduction in calculation time 
of approximately 60% in this instance. The better  convergence of the five-stage scheme in a 
multigrid method could already be inferred from Fig 8. 

5.4. Multigrid speed-up 

Although both for inviscid and for viscous turbulent flow simulations converged results have 
been found, the performance of the multigrid multiblock flow solver is not as good as that of 
the corresponding monoblock solver. Firstly, the required number of pre- and post- 
relaxations is about 10, which is quite high. Secondly, the speed-up on a vector computer  is 
lower than usual. 

For  monoblock simulations of transonic turbulent flow around an airfoil or wing-alone a 
converged solution to within engineering accuracy could be obtained after approximately 50 
W-cycles [6, 9, 11], where in each W-cycle a smaller number of pre- and post-relaxations was 
applied. In the simulations reported here approximately twice as many fine-grid relaxations 
are necessary to reach the same level of convergence. There are several reasons for this 
increased computational  effort. Firstly, in the present grid only three grid levels are 
available. This is caused by the relatively small number  of grid points per block. Secondly, 
since the residuals at block boundaries are frozen during residual averaging, its beneficial 
effect on the convergence is reduced. Thirdly, the present simulations are performed at a 
Mach number  of 0.185, whereas the transonic simulations reported in reference [6] were 
per formed at a Mach number  on the order  of 0.8. This implies that in the present simulations 
the ratio of the minimum and maximum propagation speed of the characteristic waves, 
u/(u + c), where u is the fluid velocity and c the speed of sound, is rather small. Hence,  the 
system of equations is quite stiff, which makes the Runge-Kut t a  time stepping method less 
effective. A preconditioning method,  like the one described by Turkel  [16], could be useful 
to accelerate convergence in the low Mach number range, and future study will be devoted 
to this acceleration technique. 

Apar t  from these reasons for an increase in the number  of relaxations, the speed-up on a 
vector  computer  is not as large as on a serial computer.  This is shown in Figs. 15 and 16, 
where the convergence for both a single grid and a multigrid calculation is shown. In Fig. 15 
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Fig. 16. Convergence  behavior  of  a single grid calculation (solid) and a multigrid calculation (dashed) as a function 
of  the  CPU time on a vector computer .  

the horizontal axis represents the CPU-time on a serial computer;  in Fig. 16 it represents the 
CPU-t ime on a vector computer  (both in arbitrary units). The speed-up factor on a serial 
computer  is close to 12.5, whereas the speed-up on a vector computer  is only approximately 
8. This difference can be explained by the fact that the number of grid points in several 
blocks is quite small on the coarsest mesh. Evidently, this reduces the vector length, and 
hence the efficiency when using a vector computer.  There  are several methods to increase 
the 'vector speed-up'.  In the present flow solver the variables on block interfaces are treated 
after the interior points have been addressed to, even if the usual discretization scheme is 
applicable. A simultaneous treatment of interior and boundary points, if possible, not only 
increases the vector lengths but also prevents double calculations of identical fluxes. It has 
been shown that this simultaneous treatment can lead to a gain in CPU-time by a factor of 3 
[17]. Another  way to increase the vector lengths is the merging of blocks. The reason for the 
rather  high number  of blocks for the two-element airfoil studied here is the requirement that 
each block interface is bounded by exactly two blocks. In this way only one boundary 
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condition applies at each block interface. Relaxing this requirement would increase the 
complexity of the code, but also its efficiency on vector computers. 

6. Discussion 

We presented simulation results obtained with a multiblock method for a two-element 
airfoil. For viscous turbulent flow the standard cell-vertex discretization method yields a 
solution which contains oscillations. Moreover, the rate of convergence to the steady state 
solution is unacceptably low. 

Therefore the discretization method has been changed to the vertex-based method, which 
is more consistent in the sense that all flux calculations are based on the same control 
volume. The convergence has been accelerated by the nonlinear multigrid method and 
implicit residual averaging. Both viscous and inviscid calculations are performed using the 
same multigrid process and spatial discretization method. 

The inviscid calculations have shown that a solution which is converged up to machine 
accuracy can be obtained with this multigrid method. A comparison with the single grid 
simulation method shows that a considerable reduction in calculation time is obtained with 
the multigrid method, although the convergence of the single grid method for inviscid 
calculations was already quite acceptable. We also investigated two different numerical 
boundary conditions at the solid walls. It appeared that linear extrapolation of the pressure 
not only leads to a better convergence than constant extrapolation, but also gives rise to a 
much smaller entropy layer around the airfoil. The resulting drag coefficient, which 
theoretically should equal zero in this subsonic flow, is reduced by almost 60%. 

In the viscous calculations a total reduction in computational effort with a factor of about 
12.5 can be reached with the multigrid method. The calculation time is reduced by a factor of 
about 8. The difference in these two measures for the speed-up due to the multigrid method 
can be attributed to the strongly reduced vector lengths associated with the coarser grid 
calculations reducing the effectiveness of processing the method on a vector computer. The 
numerical predictions obtained for the lift- and pressure coefficients compare well with 
experimental results and give confidence in the use of the Baldwin-Lomax model for this 
application. Moreover, the displacement thickness is found to closely agree with the 
experiments. This indicates that the scaling of the artificial dissipation with the local Mach 
number leads to an accurate representation of the flow in the boundary layers. 

The convergence of the multigrid process is studied in detail, showing that the ordering of 
the various loops in the process has a considerable effect. Interchanging the block- and stage 
loops, keeping the grid loop as the outer loop yields an optimal convergence when the block 
loop is put inside the stage loop. If the stage loop is put inside the block loop then 
convergence of the multigrid process is absent when using the five-stage Runge-Kutta 
scheme as the relaxation method. Apparently, the smoothing of the relaxation method 
becomes less effective as the number of stages between two 'updates' of the dummy variables 
increases. This result has some less favorable consequences in view of a possible parallel 
processing of the multigrid method. On the one hand parallel processing seems more 
efficient if the frequency of data transfer between the blocks can be reduced. On the other 
hand the reduction of this frequency results in a reduction of the convergence rate of the 
multigrid process, and in some instances even to an absence of convergence. This suggests 
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that in a possible parallel processing of this multigrid method, an optimal rate of data 
exchange between the blocks should be determined. 

Acknowledgements 

The authors are greatly indebted to Frans Brandsma for several useful and stimulating 
discussions and to Bart van Esch for invaluable support with the postprocessing of the 
results. Part of this research was sponsored by the Stichting Nationale Computerfaciliteiten 
(National Computing Facilities Foundation, N.C.F.) for the use of supercomputing facilities, 
with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek 
(Netherlands Organisation for Scientific Research, N.W.O.). 

Notes 

1 ISNaS is an abbreviation for Information System for flow simulation based on the Navier-Stokes equations, and is 
a cooperation of Delft Hydraulics, the National Aerospace Laboratory NLR and the Universities of Delft and 
Twente, The Netherlands. 
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